Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(2): 396-406, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37972890

RESUMO

The solid form landscape of sitagliptin phosphate was systematically evaluated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and X-ray powder diffraction (XRPD), supported by a plethora of auxiliary analytical techniques. The preformulation experiments resulted in the transition of sitagliptin phosphate monohydrate into a new anhydrous form (designated as form IV), obtained after recrystallization from absolute ethanol. The anhydrous form IV remained stable under stressed conditions (1 month at 25 °C/60 %RH and 40 °C/75 %RH). On the other hand, thermal heating (dehydration) of sitagliptin phosphate monohydrate resulted in conversion into another anhydrous form II. Form II was found to be metastable, because after melting, under exposure at 40 °C/75 %RH for 1 month, or when dissolved in absolute ethanol converted to the stable anhydrous form IV of sitagliptin phosphate. A monotropic relationship was found between both studied anhydrous forms. Intrinsic dissolution tests revealed differences in the dissolution rates between the monohydrate and the anhydrous forms of sitagliptin phosphate. This research corrects the record with an accurate chemical composition of the anhydrous form IV of sitagliptin phosphate that was previously regarded as a hemiethanolate. In addition, the crystal structure of anhydrous form II of sitagliptin phosphate has been solved and reported for the first time.


Assuntos
Etanol , Fosfato de Sitagliptina , Temperatura , Solventes , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria
2.
Int J Pharm ; 647: 123516, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37863447

RESUMO

Thiabendazole is an anthelmintic drug used to treat strongyloidiasis (threadworm), cutaneous and visceral larva migrans, trichinosis, and other parasites. The active pharmaceutical ingredient is typically administered orally as tablets that should be chewed before swallowing. Current formulations combine the active ingredient with excipients, including sodium saccharinate as a sweetener. Thiabendazole's low aqueous solubility hinders fast dissolution and absorption through the mucous membranes. We sought to reformulate this medicine to improve both solubility and palatability. We utilized the possibility of protonation of the azole nitrogen atom and selected four different hydrogen donors: saccharin, fumaric, maleic, and oxalic acids. Solvothermal synthesis resulted in salts with each co-former, whereas neat and liquid-assisted grinding enabled the synthesis of additional formulations. Product formation was observed by powder X-ray diffraction. To better understand the structural basis of the proton transfer, we solved the crystal structures of the salts with saccharin, maleic acid, and oxalic acid using single-crystal X-ray diffraction. The structure of the salt with fumaric acid was solved by powder X-ray diffraction. We further characterized the salts with vibrational spectroscopic and thermoanalytical methods. We report a broad tunability of the aqueous solubility of thiabendazole by salt formation. Reformulation with maleic acid provided a 60-fold increase in solubility, while saccharin and oxalic acid gave a modest improvement. Fumaric acid resulted in a solid with only slightly higher solubility. Furthermore, saccharin is a sweetener, while the acids taste sour. Therefore, the salts formed also result in an intrinsic improvement of palatability. These results can inform new strategies for oral and chewable tablet formulations for treating helminthic infections.


Assuntos
Anti-Helmínticos , Anti-Infecciosos , Sais/química , Sacarina/química , Pós , Tiabendazol , Difração de Raios X , Solubilidade , Edulcorantes , Comprimidos , Ácido Oxálico
3.
Chem Commun (Camb) ; 58(17): 2838-2841, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35142758

RESUMO

We report the phase diagram for the binary creatine-citric acid mixture which features a stable and broad eutectic region. Combinations containing 10-60 mol% creatine yield a deep eutectic solvent with a glass transition temperature at 270 K. Addition of up to 70 mol% water to the binary mixture affords retention of the eutectic nature and a handle to vary solvent viscosity and polarity.

4.
J Mater Chem A Mater ; 35: 19698-19704, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34721878

RESUMO

The controlled introduction of defects into MOFs is a powerful strategy to induce new physiochemical properties and improve their performance for target applications. Herein, we present a new strategy for defect formation and amorphization of the canonical MOF-74 frameworks based on fine-tuning of adsorbate-framework interactions in the metal congener, hence introducing structural defects. Specifically, we demonstrate that controlled interactions between the MOF and bidentate ligands adsorbed in the pores initiates defect formation and eventual amorphization of the crystal. These structural features unlock properties that are otherwise absent in the ordered framework, such as broad-band fluorescence. The ability to introduce defects by adsorbate-framework interactions, coupled with the inherent tunability and modularity of these structures, provides a new route for the synthesis of diverse heterogeneous and hybrid materials.

5.
Chem Commun (Camb) ; 56(88): 13520-13523, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32975275

RESUMO

Benzene and acetonitrile are two of the most commonly used solvents found in almost every chemical laboratory. Titan is one other place in the solar system that has large amounts of these compounds. On Titan, organic molecules are produced in the atmosphere and carried to the surface where they can mineralize. Here, we report the phase diagram of mixtures of acetonitrile and benzene, and provide an account of the structure and composition of the phases. To mimic the environment on Titan more accurately, we tested the stability of the structure under liquid ethane. The results provide new insights into the structure and stability of potential extraterrestrial minerals. In light of Dragonfly, NASA's upcoming mission to Titan, revisiting the fundamental chemistry of the smallest molecules with modern methods and techniques can have significant contributions to this epochal mission and can open new research directions in chemistry.

6.
Chem Commun (Camb) ; 56(8): 1195-1198, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31898719

RESUMO

A facile route to 4,4'-bipyrazole (H2bpz) and other symmetric bipyrazoles is achieved via the palladium-catalyzed homocoupling of a pyrazole boronic ester in the presence of air and water, enabling us to provide the first crystal structures and evidence of structural phase changes in the bipyrazolate-based metal-organic framework Co(bpz).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...